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Abstract 

We calculate the transient voltage induced in a radio frequency cavity by the injec- 
tion of a relativistic bunched beam into a circular accelerator. A simplified model of the 
beam induced voltage, using a single tone current signal, is generated and compared 
with the voltage induced by a more realistic model of a point-like bunched beam. The 
high Q limit of the bunched beam model is shown to be related simply to the simpli- 
fied model. Both models are shown to induce voltages at the resonant frequency w,. 
of the cavity and at an integer multiple of the bunch revolution frequency (i.e. the 
accelerating frequency for powered cavity operation) hw,. The presence of two near- 
by frequencies in the cavity leads to a modulation of the carrier wave exp(jhw,t). A 
special emphasis is .placed in this paper on studying the modulation function: These 
models prove useful for computing the transient voltage induced in superconducting 
rf cavities, which was the motivation behind this research. The modulation of the 
transient cavity voltage discussed in this paper is the physical basis of the recently 
observed and explained new kind of longitudinal rigid dipole mode which differs from 
the conventional Robinson mode. 

1 Introduction 

Accelerators with high injected beam currents will have large transient voltages 
_ 

induced in 
their radio frequency (RF) cavities during injection, but most beam loading calculations 
ignore the transient response and look only at the steady state solution to the beam loading. 
For superconducting cavities, there has been concern over whether the high transient surface 
fields could drive the surface into a normal conducting state and quench the RF ‘field. This 
work was started when we were investigating the feasibility of operating the Superconducting 
Xray Lithography Source (SXLS) as a coherent light source [I] using a superconducting RF 
cavity operated with relatively low RF generator power at very large cavity detuning. In 
addition to the concern for superconducting cavities, the transient beam loading is also of 
interest for the stability of servo systems during injection with high beam currents. 

This paper will deal primarily with the transient beam loading in RF cavities for relativistic 
bunched beams. The next section will layout the basic equations for calculating the beam 
induced voltages in a resonant cavity, the third section will calculate the transient voltage 
for a simplified switched on single tone current and the fourth section will calculate the 
corresponding voltage for periodic transits of a bunched beam through a resonant cavity. 
The high Q limit of the results of this section will be calculated in the next section and 
compared with the simplified rriodel of section three. 

1 



2 Wakefield and Impedance 

The RF cavity voltage induced by the beam current I(t) is 

v(t) = - 
J 

Co dt’bv(t - t’)1(t’), .(l) 
--oo 

where W(t) is the wake function. For a very relativistic beam, the wake function for a 

resonant cavity, with resonant frequency w, and quality factor Q is [2] 

ift >0 

ift=O , (2) 
ift<O 

where the loss factor k, = &I?, with R,h = shunt impedance, and I’ = w,/2Q. The quantity 

2-f 3 l/I’ will b e refered to as the filling time. The equality W(0) = W(O+)/2 is the well- 

known “fundamental theorem of beam loading” [3] which states that the bunch sees only 

half of the voltage the bunch itself induces in the same passage. In terms of the complex 
resonance frequency fl - w, + jr, the beam impedance corresponding to the above wake 

function is 

co Z(w) = J dt W(t) e-jwt (3) 
-03 

1 
= -jb -+ 

W-i-2 
(4 

The damping coefficient I’ of the wake function can be easily seen to be half of the bandwidth 

of the impedance in Eq.(4). 

It is convenient to define the impedance function 

C(w) = 2 ) 

and the corresponding complex wake function 

u(t) = &- J Oc, d~ej”~(‘(w) = 2k, ejnt ift>O 

k, ift=O . 
-CO 0 ift<O 

(5) 

(6) 

Then the actual cavity gap voltage V(t) is g iven by the real part of the complex voltage v(t) 

V(t) E Re[v(t)l = Re[- Jm dt’U(t - t’)I(t’)] . (7) 
-CO 

In terms of the frequency detune angle 0 defined by 
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A= w---w, = l? tan@, 

the impedance function then can be expressed by 

(8) 

C(w) = 2&h cos 0 e-j0 . (9) 

These relations will be used below to express the transient cavity voltage induced by the 
beam. 

3 A Simplified Model 

We first consider a very simple example where the beam current is given by a switched on 
single tone signal at t=O given by 

In Section 5, the voltage induced in a high Q cavity by the periodic passage of a bunched 

2I,, cos hw,t , 
0 

7 

ift>O 
ift<O ’ (10) 

beam of charge q at t = 0, To, 22’,, . . . . where T, = 2n/w, and I,, = q/To, will be shown to be 
closely related to that induced by the current in Eq.(lO). 

The complex cavity voltage induced 
form corresponding to the operating 
the voltage is given by 

by the current in Eq.(lO) can be written in a phasor 
(accelerating) frequency hw,. From Eqs.( 7) and (lo), 

&a(t) = Psm(t) ejhwpt, with (11) 

(12) 

where the detune frequency A is given by Eq.(8) and the subscript sm is used to indicate 
“Simplified Model”. The correction to the approximationjn Eq.( 12) is smaller by a factor of 
0(1/29). Th e t’ ime variation o:F the modulation function V,, given by Eq. (12) is determined 
by the two parameters A and l’. 

The first term on RHS of Eq.( 12), which gives a constant amplitude to the term with 
frequency hw, in Eq.( ll), is the asymptotic solution to the induced voltage (i.e. steady state 
solution). The last term is the transient voltage induced by the_ discontinuity in the current 
at t = 0. This discontinuity can be considered to provide an 00 bandwidth to the current 
signal and can therefore excite all frequencies of the resonance, Eq.(5). As a consequence, 
the transient voltage gives a term to Eq.(ll) which oscillates with the resonant frequency w,. 
instead of the driving frequency hw,. 
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Fig. 1: The sampled transient voltage, Eq.(14), for the Simplified Model. The horizontal axes are 

i= t/Tf and the voltage on the vertical axes are in arbitrary units. Graphs from la to If are, respectively, 

for 0 = O”, 45”, 65”, 80”, 85’ and 88”. 

In order to visualize the envelope function Real[ vSm], ‘t 1 is convenient to sample the voltage 
at t = t, s pT,, with p = 0, 1,2 . . . . so that the carrier wave exp(jhw,t) = 1. From E:qs.(ll) 
and (12), 

%n(tp) = L&J, 

= -21,,& cosOe-j" [l - e-jAtpe-rtq . (13) 

The cavity voltage at these instants are given by the real part of Eq.(13). Let us define a 

dimensionless quantity ? = tp/Tf; it is the sampled time expressed in units of the filhng time 

Tf. Then the real part of the above equation can be written as 

V&(t, 0) = -21,&h cos O[cos 0 - cos(ttan 0 + 0) exp(-?)] . (14) 

Note that in this expression the explicit dependence of V,, on l? is “scaled out”. The sampled 

cavity voltage as given by Eq.(14) is plotted for various detune angles in Fig. 1. 

As a measure of the magnitude of the transient-voltage fluctuation, let us define for a given 

0, 

S(O) = [maximum(lv,,I)]/IVs,(t-) oo>l . 
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From Fig. 1, it is clear that the absolute maximum of IV& 1 is the local maximum correspond- 
ing to the smallest ?. Simple arithmatics shows that the maximum occurs at ? = 7r/2 tan 0, 
and 

c(O) = 1+ tan 0 exp( -n/2 tan 0) . (16) 

The parameter E as plotted in Fig.2 increases slowly when 0 increses from 0 to N 70”. 
However it starts to increase rapidly around 0 N 80”. 

F ., , ( 
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0 

Fig. 2: The transient-voltage-fluctuation parameter < as a function of the detuning angle 0. 

We summarize this section by noting that the voltage V,, as depicted in Fig. 1 satisfies the 
following conditions: (a) it vanishes at t = 0, and (b) ‘t I is a function of only two variables ? 
and 0. We shall see in the next section that these characteristics of the simplified model do 
not hold true for a more realistic bunched beam model. 

4 Bunched Beam. Induced Voltage 

In this section, we consider the case of a point-like bunch of charge q passing the cavity at 
t = 0, To, 2T,, . ..a. The beam current seen by the cavity is 

I(t) = qe 6(t - pT,) . 
p=o 

(17) 

The current impulse at t = pT, introduces a discontinuity of the induced voltage at the same 
instant. To calculate the complex voltage v(t) induced by this periodic impulse, we introduce 
a reduced time r, r f t - NJ”, where Nt is the integer part of t and 0 < r < To. The 
contribution of any pth term, p 5 Nt, in Eq.(17) to the cavity voltage is, easily calculated 
from Eq.(7) and th e complex .voltage induced by the current in Eq.( 17) is given by 

u(t) = -2qb 2 exp[jQ( NJ, + T - pT,)] . (18) 
p=o 
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An instructive approach is to express this voltage as the sum of two terms 

(19) 

where vO(t) and vi(t) are the voltages induced, respectively, by the currents 

and 

p=-co 

I$) = Q 2 b(t -pT,) . 

p=-co 
(21) 

Then the induced voltages for these currents are calculated from Eqs.(G) and (7) and sim- 
plified by using the Poisson sum rule to give the expressions: 

vO(t) = 2k,q ejnT/(ejnT, - 1) (22) 

and 
2k,q &““/(l - e-jnTo) 

vo(t) 

for t > 0 

for t < 0 . (23) 

The equilibrium distribution (22) h as b een obtained previously by Boussard [4]. This func- 
tion is periodic in t with period TO, but with discontinuities at t = N,T,. Its Fourier series 
expansion is given by [5] 

Uo(t) = jI,, 2 nu2kl ~ ejnwot , 
0 

T&=-O2 

(24) 

where w, = 27r/T, and I,, = q/T,. 

The total induced voltage, v(t), can be obtained from Eqs.(lS), (22) and (23). We see v(t) 

vanishes for t < 0, and 

y(t) = 2k,q [gn7 - ejnt ejnT,]/(ejnTo - 1) for t>o. (25) 

The Fourier expansion of this voltage is given by 

u(t) = jI,, g nwtkI ~ ejnwot - 2&q gnt ejnTo/(ejnTo _ 1) . 

*=-CO 

(26) 

In the next section, we consider an approximation of this voltage for a high Q resonance. 
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5 High Q Resonance 

In this section we look at the bunched beam induced voltage for a resonance with & large 
enough, (I/w, M h/(2&) << l), that only one term n = h in Eq.(26) falls within the 
bandwidth of the resonance. The terms with n # h are smaller than this term by O(I’/w,) 
and can be neglected in Eq.(26). Then by approximating the denominator of the last term 
of Eq.(26) by 

exp(jM’,) - 1 = exp[-j(hwO - w, - jI’)Z’,] - 1 

z -j(hwo - w, - jF.)T, , (27) 

we obtain for Eq.(26) 

v(t) 2 
?9,&, 
A _ jr [exp(jh@) - exp(jM - I’t) exp(-jATO - IT,)] . 

Similar to Eq.(ll), this equation can be expressed in terms of a phasor at the operating 
frequency hw, using the detune angle, Eq.(8). The result is 

v(t) = &b(t) ejhwot, (29) 

where the modulation function for bunched beam, subscript bb, is given by 

&b(t) Z -21,&h cos Oe-je [ 1 - emiAt eBrt exp(-IT,P/ cos O)] . (30) 

Comparison of this with the corresponding voltage of the simplified model, Eq.(12), shows 
that the only difference between these two expressions is the factor exp(-rT,eje/cos 0) 
inside the bracket of Eqs(30). This factor guarantees that 

& -+ -2qk, as t + o+, (31) 
. 

as expected. In the last equation, a term smaller by a factor of O(y) where y - I?!?, is the 
cavity decay rate per revolution, is ignored in line with the present approximation. 

Sampling this phasor voltage again at t = t,+ - pTo in the limit of r + 0+, with p = 0, 1,2..., 
and again using the notation S G tp/Tf, we obtain the induced voltage 

Vbb(Z, 0,~) = Re[ %b($+)l 7 

= -2I,,,_&h cos @[cos @ - COS{(%+ 7) tan@ + 03 exp(--f- r>l . (32) 

While V,, as given by Eq. (14) was independent of I’, T/bb above depends on I? through y. 
However, it is interesting that the two voltages are related simply by 

T/bb(f,@,Y) = v,m(f+‘-/,@) - (33) 

Because of this relation, we can infer the behavior of Vbb from that of V,,; the plots for Vbb is 
the same as those for V,, , Fig. 1, except that the figures should be shifted to the left by y. 
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Note that this shift in ? is equivalent to a shift in t, by T,. Also note that if we define ? = I’t 

in the equations (12) and (30): we obtain a similar relation for the modulation functions 
themselves 

G&, @,r) = P&t+ y, 0) . (34) 

Some important consequenses of this shift in t are: 
(i) unlike I&,, Vbb does not vanish at i=O; the amount of the shift is so as to reproduce the 

desired result Eq.( 31)) and 
(iii) the expression (16) for the transient-voltage-fluctuation parameter is still valid for the 
high Q bunched beam model. 

6 Conclusions 

It has been shown in this paper that the transient beam loading induces voltages at two 
frequencies: hw, and R = w, + jl?. It is the beating of these two frequencies that causes 
the total voltage to have oscillations in its envelope, as shown in Fig. 1. Although these 
frequencies have been observed during injection, they have not been shown to cause any 
significant problem for conventional RF cavity systems. However, in the design of a RF 
system using superconductive cavity with a relatively low generator power and with a high 
cavity detuning, the transient-voltage fluctuation is bound to become a major constraint. 

We end this paper by noting that the presence of two frequencies in the cavity has a very 
important consequence on the coherent behavior of bunched beams in the storage ring [6]. 
It leads to a longitudinal rigid dipole beam mode with coherent frequency A + jr in the 
limit of vanishing beam current; this mode is distinct from the conventional Robinson mode 
which + the synchrotron frequency in the same beam current limit. This new coherent 

dipole mode was actually first observed in 1995 experimentally by users on the VUV Ring 
at the NSLS [7] and it has since been known to degrade the infra-red photon beam unless 
care is taken in choosing the operating detune angle. 
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